The FOXM1–ABCC5 axis contributes to paclitaxel resistance in nasopharyngeal carcinoma cells
نویسندگان
چکیده
Paclitaxel is clinically used as a first-line chemotherapeutic regimen for several cancer types, including head and neck cancers. However, acquired drug resistance results in the failure of therapy, metastasis and relapse. The drug efflux mediated by ATP-binding cassette (ABC) transporters and the survival signals activated by forkhead box (FOX) molecules are critical in the development of paclitaxel drug resistance. Whether FOX molecules promote paclitaxel resistance through drug efflux remains unknown. In this study, we developed several types of paclitaxel-resistant (TR) nasopharyngeal carcinoma (NPC) cells. These TR NPC cells acquired cancer stem cell (CSC) phenotypes and underwent epithelial to mesenchymal transition (EMT), and developed multidrug resistance. TR cells exhibited stronger drug efflux than parental NPC cells, leading to the reduction of intracellular drug concentrations and drug insensitivity. After screening the gene expression of ABC transporters and FOX molecules, we found that FOXM1 and ABCC5 were consistently overexpressed in the TR NPC cells and in patient tumor tissues. Further studies demonstrated that FOXM1 regulated abcc5 gene transcription by binding to the FHK consensus motifs at the promoter. The depletion of FOXM1 or ABCC5 with siRNA significantly blocked drug efflux and increased the intracellular concentrations of paclitaxel, thereby promoting paclitaxel-induced cell death. Siomycin A, a FOXM1 inhibitor, significantly enhanced in vitro cell killing by paclitaxel in drug-resistant NPC cells. This study is the first to identify the roles of FOXM1 in drug efflux and paclitaxel resistance by regulating the gene transcription of abcc5, one of the ABC transporters. Small molecular inhibitors of FOXM1 or ABCC5 have the potential to overcome paclitaxel chemoresistance in NPC patients.
منابع مشابه
Next generation deep sequencing identified a novel lncRNA n375709 associated with paclitaxel resistance in nasopharyngeal carcinoma
Paclitaxel chemoresistance restricts the therapeutic efficacy and prognosis of patients with nasopharyngeal carcinoma (NPC). Accumulating evidence suggests that aberrant expression of long non-coding RNAs (lncRNAs) contributes to cancer progression. Therefore, we aimed to identify lncRNAs associated with paclitaxel resistance in NPC. First, paclitaxel-resistant CNE-2 cells (CNE-2-Pr) were succe...
متن کاملOverexpression of Forkhead Box Protein M1 (FOXM1) in Ovarian Cancer Correlates with Poor Patient Survival and Contributes to Paclitaxel Resistance
AIM Deregulation of FOXM1 has been documented in various cancers. The aim of this study was to evaluate the role of FOXM1 in ovarian cancer tumorigenesis and paclitaxel resistance. EXPERIMENTAL DESIGN Expression of FOXM1 was examined in 119 clinical samples by immunohistochemistry and correlated with clinicopathological parameters. Effects of FOXM1 knockdown on ovarian cancer cell migration, ...
متن کاملRad51 Expression in Nasopharyngeal Carcinoma and Its Association with Tumor Reduction: A Preliminary Study in Indonesia
Background: Overexpression of Rad51 protein in many tumor cells has been proven to increase radioresistance and can be related to the resistance of chemosensitivity of tumor cells. This preliminary study was conducted to determine the relationship between the Rad51 expression level in nasopharyngeal carcinoma and the response of the treatment based on the measurement o...
متن کاملFoxM1 mediates resistance to herceptin and paclitaxel.
Inherent and acquired therapeutic resistance in breast cancer remains a major clinical challenge. In human breast cancer samples, overexpression of the oncogenic transcription factor FoxM1 has been suggested to be a marker of poor prognosis. In this study, we report that FoxM1 overexpression confers resistance to the human epidermal growth factor receptor 2 monoclonal antibody Herceptin and mic...
متن کاملFOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells
Chemoresistance to anti-cancer drugs substantially reduces survival in epithelial ovarian cancer. In this study, we showed that chemoresistance to cisplatin and paclitaxel induced the epithelial-mesenchymal transition (EMT) and a stem cell phenotype in ovarian cancer cells. Chemoresistance was associated with the downregulation of epithelial markers and the upregulation of mesenchymal markers, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017